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Abstract-A perturbation procedure is presented which expresses the elastodynamic fields near
a kinked crack in terms of a power series of K, where K'Ir is the kinking angie. Mode-III and
Mixed Mode I-II crack kinking of a semi-infinite crack have been considered. Each order in
the approximation requires the field for a crack which propagates in its own plane, but where
the crack faces are subjected to crack-face tractions which are related to the actual crack­
kinking geometry. For crack kinking under stress-wave loading it was shown in an earlier paper
that the lowest order approximation gives very good agreement with exact analytical and nu­
merical results over a substantial range of kinking angles.

1. INTRODUCTION

In [1], an approximate method was used to compute elastodynamic stress intensity
factors for Mode-III and Mixed-Mode I-II crack kinking, for cases that the particle
velocities are self-similar. It was shown that for an important range of kinking angles
the elastodynamic stress intensity factor for a kinked crack can be approximated by
the stress intensity factor for the crack propagating in its own plane, provided that the
new crack faces are subjected to appropriate surface tractions. For Mode-III cases
the approximation was compared with exact results which can be found in an article
by Dempsey et al. [2]. For Mixed-Mode I - II cases, comparisons with the numerical
results of [3] were carried out, and satisfactory agreement was obtained.

In this study, we investigate the mathematical foundation of the approximation of
[1]. It is shown that the approximate results correspond to the zeroth order terms in
a perturbation procedure for small kinking angle K'1T, regardless of whether the problems
have self-similar field variables.

For Mode-III the approximate results of [1] showed surprisingly good agreement up
to large values of the kinking angle. The reason for this good agreement is revealed by
the results of the present study. For Mode-III cases, displacement solutions to the first
order system of equations are symmetric with respect to the crack plane, and hence
first order contributions to Mode-III stress intensity factors vanish. Consequently, in
the approach of [1], which corresponds to the zeroth order approximation, the Mode­
III elastodynamic stress intensity factors are accurate up to O(K2). The first order Mixed­
Mode I-II elastodynamic stress intensity factors do, however, not vanish, and hence
the results of [1] are accurate only up to O(K).

In the formulation of this study the crack faces are subjected to surface tractions.
These can be chosen in such a manner that superpositions yield solutions for traction­
free crack faces.

2. MODE-III KINKED CRACK

In a homogeneous, isotropic and linearly elastic solid the antiplane displacement
w(r, a, t) is governed by

Here r and a are polar coordinates centered at the original crack tip, (') == a/at and
ST is the slowness of transverse waves

ST == l!CT,

273

C} == (~p). (2.2)
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Fig. I. Kinked crack geometry.

For t 2: 0 we consider the following conditions on the crack faces

e = ± 'Ti, r > 0:

e = K'Ti ± 0, 0 < r < S(t):

In addition we have the initial conditions

(jJ./r)aw/ae = '1"1 (r, t)

(jJ./r)aw/ae = 'l"2(r, t).

(2.3a)

(2.3b)

w(r, e, t) = w(r, e, t) = 0 for t < o. (2.4)

We will be particularly interested in the elastodynamic Mode-III stress intensity factor
for the kinked crack, which is defined as

(2.5)

The geometry is shown in Fig. 1.
For arbitrary CF == dS/dt > 0, an exact solution to (2.1)-(2.4) is not available. In

this study an approximate solution is constructed on the basis of a mapping from 6 to
the new variable X by:

or
Ke = - - X2 + X + K'Ti.
'Ti

(2.6)

(2.7)

Equations .(2.6) and (2.7) imply that e = - 'Ti, K'Ii and 'Ii are mapped into X = - 'Ti, 0,
and 'Ti, respectively. The displacement w(r, X, t) is then found to satisfy the equation

with the boundary conditions

±'Ti,0 < r: jJ. [aw 2K aw ] = 'l"1(r, t) (2.9)X = -;: aX ± 1 - K2 ax

X = ±O,O < r < S(t): ~[aw +~awJ = 'l"2(r, t). (2.10)
r ax 1 - K2 ax

Let us now consider a perturbation series for w(r, x, t) of the general form

w(r, X, t) = w(O)(r, X, t) + K'Tiw(l)(r, X, t) + ... (2.11)

By using the definition of Klll(K, t) given by eqn (2.5) it is apparent that the expansion
corresponding to (2.11) is

(2.12)
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By substituting (2.11) into (2.8)-(2.10) and collecting terms of the zeroth power of
K1T, we obtain for w(O)(r, x, t)

a2w(O) 1 aw(Ol 1 a 2 w(Ol
-- + --- + --- = s}w(O)ar r ar r aX2

X = ±1T, 0 < r: (~r)aw(O)/aX = TI(r, t)

X = ±O,O < r < S(t): (1LIr)awIOl/aX = T2(r, t).

(2.13)

(2.14)

(2.15)

The Mode-III elastodynamic fields for the problem defined by (2.13)-(2.15), subject
to zero initial conditions, can be obtained by the method of [4]. In terms of the crack­
face tractions, the stress field in the plane of the crack, ahead of the crack tip, can be
expressed as:

tJ. aw(O)
- - (r, X = 0, I; S(lI»
r aX

1 1 i5 (11) !(O)(v, I - STr + STv)[S(/d - VP/2=- ~
1T [r - S(lI)]112 r-c71 r - v

where II must be computed from

and

(2.16)

(2.17)

fO)(v, T) = TI(V, T)H( -v) - T2(V, T)H(v)H[S(T) - v]. (2.18)

The displacement field can be expressed in terms of both the crack face tractions and
the stress field ahead of the crack tip by

(0) • _ CT for q(X, I) dX dl
w (r, X, t, S(tl» - 1T1L JR [C}(I _ 1)2 - (r cos X - X)2 - r sin2 X]112 '

where R is the domain of dependence in the time-space domain, defined by

(2.19)

and

CT(I - r) - [(r cos X - X)2 + r sin2 X]tl2 ~ 0, I ~ 1~ 0, (2.20a,b)

- - IL aw(O) - -
q(X, I) = PO)("x, I) + -;: ax (x, X = 0, t)H[x - 5(/)]. (2.21)

The stress intensity factor follows from (2.5) and (2.16) as

(2.22)

Equations (2-13)-(2.15) show that in first approximation elastodynamic stress intensity
factors for Mode-III crack kinking problems can be computed for a crack propagating
straight ahead, provided that the crack face tractions are the ones corresponding to
the actual kinked geometry.
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By collecting terms of order K, the equations governing the first order problem in
the perturbation procedure are obtained as

(2.23)

x = ± 'IT, 0 < r:

X = ± 0, 0 < r < S(t):

(j..L/r)iJwl)J/iJX = +(Z/'IT)TI(r, t)

(j..L!r)iJw(l)/iJX = o.
(2.24)

(2.25)

Since w(O)(r, x, t) is an anti-symmetric field with respect to X = 0, iJw(O)/iJX and xifw(QJ/
aX:- are symmetric with respect to X = O. It then follows from (2.23)-(2.25) that w(1) is
also a symmetric field with respect to X = 0, hence Km == O.

It is noted from (2.16) and (2.19) that the displacements and the stresses of the zeroth
order problem depend explicitly only on the crack-kink length, but not on the crack
tip speed. For the higher order problems the stress fields in the plane of the crack,
ahead of the crack tip, are of the same form as (2.16), except that fO) in (2.16) must
be replaced by appropriate functions f n):

where n is even, while Ki11 == 0 for n is odd. Thus KIll depends on the crack tip speed
only through the term (l - CF/CT) 1/2 •

3. MIXED MODE I-II KINKED CRACK

A complete statement of the equations which govern plane-strain elastodynamic
fields is given in [5]. In the usual manner the displacement components can be expressed
in terms of displacement potentials <I>(r, e, t) and I\s(r, e, t) by:

a<l> 1 al\s
U = - +--

r ar r ae '
1 a<l> al\s

Ue = -- - -,
r ae ar

(3.1a,b)

where <I> and I\s satisfy uncoupled wave equations

Here ST is defined by (2.2) and SL is the slowness of longitudinal waves

(3.2a)

(3.2b)

d = (A + 2j..L)/p. (3.3)

For t ;:: 0 we consider the folowing conditions on the crack faces

e = ±'IT, r > 0: (Je = PI(r, t)

(JDr = TI(r, t)

e = KT ± 0, °< r < set): (Jo = P2(r, t)

(3.4a)

(3Ab)

(3.5a)

(3.5b)
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In addition we have the initial conditions

t < 0: <I>(r, e, t) = 4>(r, e, t) = \jI(r, e, t) = ~(r, e, t) = O. (3.6)

The elastodynamic Mode I and Mode II stress intensity factors for the kinked crack
are defined as

K1(K, t) = lim [2'TT(r - S)p/2(J'e(r, e, 1) le-K1T (3.7a)
Cr-S)-+O+

Let us now consider perturbation series for <I>(r, x, t) and \jI(r, x' t) of the general
form:

H = <I> or \jI. (3.8)

By using the definition of K1(K, 1) and Kll(K, 1) given by eqn (3.7) it is apparent that
the expansions corresponding to (3.8) are

K;(K, t) = /0.0) + O(K) , i = lor II. (3.9)

From (2.6)-(2.7), (3.1)-(3.2), (3.4)-(3.6) and (3.8), we obtain for <l>CO)(r, x, t) and
~O)(r, x, t)

a 2<1>(O) 1 a<l>CO) 1 a 2<1>CO) ..
-- + - -- + - -- = S1.<I>COI

ail r ar il ax2

a2\j1(O) I a\jlcol 1 a2\j1CO) ..__ + __ + = S~COI

ail r ar il ax2

x = ±'TT, r > 0: (J'~O) = PI(r, t)

(J'~ol = T.(r, t)

x = ± 0, 0 < r < S(t): (J'~01 = P2(r, t)

(3.10a)

(3.10b)

(3.lla)

(3.llb)

(3.12a)

(3.12b)

The Mixed Mode I-II elastodynamic stress intensity factors for the problem defined
by (3.10)-(3.12) together with zero initial conditions can be found in [6]. As for the
Mode-III problem, the stress fields ahead of the crack tip in the plane of the crack
depend explicitly only on the crack-kink length but not the crack tip speed. For the
zeroth order case, the stress intensity factors at the kinked crack tip are obtained as

K1 = (l - sRcF)(1 - SLCF)- 1/2r+(-sF)kl(S, K, t) (3.13)

Kn = (l - sRcF)(1 - STCF)- 1I2r+ (-sF)kll(S, K, t), (3.14)

where SF = lIcF. SR is the slowness of Rayleigh surface waves,

(3.15)
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and

In (3.16):

M. K. KUOANDJ. D. ACHENBACH

(3.16a)

(3.16b)

(3.17)

In eqns (3.17)-(3.18), i, j = r, X, and

*gxx(v, t) = -PI(V, t)H( -v) - P2(V, t)H(v)H(S - v)

*gxr(v, t) = -'TI(V, t)H( -v) - 'T2(V, t)H(v)H(S - v).

(3.19)

(3.20)

It can be shown that the contributions to the Mixed-Mode I-II stress intensity factors
from the first order problems do generally not vanish. Hence the zeroth order result
is valid to O(K). Nevertheless, the results of [I] showed very satisfactory agreement
with the numerical results of [3] for values of K up to K = 0.25.
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